Phase-matched four-wave mixing and sensing of water molecules by coherent anti-Stokes Raman scattering in large-core-area hollow photonic-crystal fibers
نویسندگان
چکیده
Phase-matched four-wave mixing is demonstrated for millijoule nanosecond pulses guided by photonic bandgaps of hollow fibers with a two-dimensionally periodic cladding and a core diameter of 50 m. Raman resonances related to the stretching vibrations of water molecules inside the hollow fiber core are detected in the spectrum of the four-wave mixing signal, suggesting phase-matched coherent anti-Stokes Raman scattering in hollow photonic-crystal fibers as a convenient sensing technique for condensed-phase species adsorbed on the inner fiber walls and trace gas detection. © 2005 Optical Society of America OCIS codes: 190.4370, 320.7140.
منابع مشابه
Investigation of Scalar Modulation Instability in the Presence of Raman Scattering in Photonic Crystal Fibers
In this paper, by including Raman scattering in the coupled-mode equations, the scalar modulation instability in photonic crystal fibers is investigated. The evolution of the pump, Stokes and anti-Stokes waves along the fiber as well as the conversion efficiency for two cases, with and without Raman effect, are studied. The effect of anti-Stokes seed and the pump depletion on the evolution of S...
متن کاملFiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy.
We present a fiber-format picosecond light source for coherent anti-Stokes Raman scattering microscopy. Pulses from a Yb-doped fiber amplifier are frequency converted by four-wave mixing (FWM) in normal-dispersion photonic crystal fiber to produce a synchronized two-color picosecond pulse train. We show that seeding the FWM process overcomes the deleterious effects of group-velocity mismatch an...
متن کاملDouble-clad hollow core photonic crystal fiber for coherent Raman endoscope.
Performing label free coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) in endoscope imaging is a challenge, with huge potential clinical benefit. To date, this goal has remained inaccessible because of the inherent coherent Raman noise that is generated in the fiber itself. By developing double-clad hollow core photonic crystal fiber, we demonstrate coherent an...
متن کاملRaman gas self-organizing into deep nano-trap lattice
Trapping or cooling molecules has rallied a long-standing effort for its impact in exploring new frontiers in physics and in finding new phase of matter for quantum technologies. Here we demonstrate a system for light-trapping molecules and stimulated Raman scattering based on optically self-nanostructured molecular hydrogen in hollow-core photonic crystal fibre. A lattice is formed by a period...
متن کاملPicosecond anti-Stokes generation in a photonic-crystal fiber for interferometric CARS microscopy.
We generate tunable picosecond anti-Stokes pulses by four-wave mixing of two picosecond pump and Stokes pulse trains in a photonic-crystal fiber. The visible, spectrally narrow anti-Stokes pulses with shifts over 150 nm are generated without generating other spectral features. As a demonstration, we employ the generated anti-Stokes pulses as reference pulses in an interferometric coherent anti-...
متن کامل